World's first medical networking and resource portal

Community Weblogs

Jun27

MICROSCOPE WITH 3D IMAGE WILL REPLACE FROZEN & OPEN BIOPSY DURING CANCER  SURGERY 

 

Prof Dr,DRAM,HIV /AIDS,HEPATITIS ,SEX DISEASES & WEAKNESS expert,New Delhi,India, +917838059592


When patient  undergo lumpectomies to remove breast cancer or any other cancer , doctors try to remove all the cancerous tissue while conserving as much of the healthy breast tissue as possible.But currently there's no reliable way to determine during surgery whether the excised tissue is completely cancer-free at its margins -- the proof that doctors need to be confident that they removed all of the tumor. It can take several days for pathologists using conventional methods to process and analyze the tissue.      That's why between 20 and 40 percent of patients  have to undergo second, third surgeries to remove cancerous cells that were missed during the initial procedure, according to studies.

       A new microscope invented by a team of University of Washington mechanical engineers and pathologists could help solve this, and other, problems. It can rapidly and non-destructively image the margins of large fresh tissue specimens with the same level of detail as traditional pathology -- in no more than 30 minutes.The new light-sheet microscope -- which is described in a new paper published June 26 in Nature Biomedical Engineering -- offers other advantages over existing processes and microscope technologies. It conserves valuable tissue for genetic testing and diagnosis, quickly and accurately images the irregular surfaces of large clinical specimens, and allows pathologists to zoom in and "see" biopsy samples in three dimensions.

       Current pathology techniques involve processing and staining tissue samples, embedding them in wax blocks, slicing them thinly, mounting them on slides, staining them, and then viewing these two-dimensional tissue sections with traditional microscopes -- a process that can take days to yield results.Another technique to provide real-time information during surgeries involves freezing and slicing the tissue for quick viewing. But the quality of those images is inconsistent, and certain fatty tissues, such as those from the breast, do not freeze well enough to reliably use the technique.

         By contrast, the UW open-top light-sheet microscope uses a sheet of light to optically "slice" through and image a tissue sample without destroying any of it. All of the tissue is conserved for potential downstream molecular testing, which can yield additional valuable information about the nature of the cancer and lead to more effective treatment decisions.

        "Slide-based pathology is still an analog technique, much like radiology was several decades ago when X-rays were obtained on film. By imaging tissues in 3-D without having to mount thin tissue sections on glass slides, we are trying to transform pathology much like 3-D X-ray CT has transformed radiology," Liu said. "While it is possible to scan microscope slides for digital pathology, we digitally image the intact tissues and bypass the need to prepare slides, which is simpler, faster and potentially less expensive."

"If we can do this without consuming any tissue, so much the better," said co-author Dr. Larry True, professor of pathology at UW Medicine. "We want to use that valuable tissue for purposes which are becoming ever more important for treating patients -- such as sequencing the tumor cells and finding genetic abnormalities that we can target with specific drugs and other precision medicine techniques."

The light-sheet microscope also offers advantages over other non-destructive optical- sectioning microscopes on the market today, which process images slowly and have difficulty maintaining the optimal focus when dealing with clinical specimens, which always have microscopic surface irregularities.

      The UW microscope can both image large tissue surfaces at high resolution and stitch together thousands of two-dimensional images per second to quickly create a 3-D image of a surgical or biopsy specimen. That additional data could one day allow pathologists to more accurately and consistently diagnose and grade tumors.

 

      The team is currently working on speeding up the optical-clearing process that allows light to penetrate biopsy samples more easily. Future areas of research include optimizing their 3-D immunostaining processes, as well as working with machine learning experts to develop algorithms that can process the vast amounts of 3-D pathology data that their system generates, with the ultimate goal of helping pathologists zero in on suspicious areas of tissue.



Comments (0)  |   Category (General)  |   Views (589)

Community Comments
User Rating
Rate It


Post your comments

 
Browse Archive